Search results

Search for "Kerr microscopy" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • by a local magnetic field the field direction of which corresponds to the direction of the unidirectional anisotropy of the domain. EB fields were determined by Kerr microscopy of the engineered domain pattern. The mesh size of 10 nm × 10 nm was chosen to follow the stray-field exchange length of the
PDF
Album
Full Research Paper
Published 03 Dec 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • and magnetostatic field distribution in a periodic array of triangular nanoholes forming a hexagonal antidot lattice in a thin Py film by using time-resolved Kerr microscopy. The experimental results reveal that the magnetization dynamics can be effectively tuned by the systematic variation of the
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations
  • delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices. Keywords: antidot lattice; first-order reversal curves; Kerr microscopy
PDF
Album
Full Research Paper
Published 24 May 2016
Other Beilstein-Institut Open Science Activities